Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38214910

RESUMEN

Stem respiration (RS) substantially contributes to the return of photo assimilated carbon to the atmosphere and, thus, to the tree and ecosystem carbon balance. Stem CO2 efflux (ECO2) is often used as a proxy for RS. However, this metric has often been challenged because of the uncertain origin of CO2 emitted from the stem due to post-respiratory processes. In this Insight, we (i) describe processes affecting the quantification of RS, (ii) review common methodological approaches to quantify and model RS and (iii) develop a research agenda to fill the most relevant knowledge gaps that we identified. Dissolution, transport and accumulation of respired CO2 away from its production site, reassimilation of respired CO2 via stem photosynthesis and the enzyme phosphoenolpyruvate carboxylase, axial CO2 diffusion in the gas phase, shifts in the respiratory substrate and non-respiratory oxygen (O2) consumption are the most relevant processes causing divergence between RS and measured stem gas exchange (ECO2 or O2 influx, IO2). Two common methodological approaches to estimate RS, namely the CO2 mass balance approach and the O2 consumption technique, circumvent some of these processes but have yielded inconsistent results regarding the fate of respired CO2. Stem respiration modelling has recently progressed at the organ and tree levels. However, its implementation in large-scale models, commonly operated from a source-driven perspective, is unlikely to reflect adequate mechanisms. Finally, we propose hypotheses and approaches to advance the knowledge of the stem carbon balance, the role of sap pH on RS, the reassimilation of respired CO2, RS upscaling procedures, large-scale RS modelling and shifts in respiratory metabolism during environmental stress.


Asunto(s)
Dióxido de Carbono , Árboles , Árboles/metabolismo , Dióxido de Carbono/metabolismo , Ecosistema , Transporte Biológico , Carbono/metabolismo , Tallos de la Planta/metabolismo
2.
Tree Physiol ; 43(10): 1731-1744, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37471648

RESUMEN

The carbon isotope composition of respired CO2 (δ13CR) and bulk organic matter (δ13CB) of various plant compartments informs about the isotopic fractionation and substrate of respiratory processes, which are crucial to advance the understanding of carbon allocation in plants. Nevertheless, the variation across organs, species and seasons remains poorly understood. Cavity Ring-Down Laser Spectroscopy was applied to measure δ13CR in leafy shoots and woody stems of maple (Acer platanoides L.), oak (Quercus robur L.) and cedar (Thuja occidentalis L.) trees during spring and late summer. Photosynthesis, respiration, growth and non-structural carbohydrates were measured in parallel to evaluate potential drivers for respiratory fractionation. The CO2 respired by maple and oak shoots was 13C-enriched relative to δ13CB during spring, but not late summer or in the stem. In cedar, δ13CR did not vary significantly throughout organs and seasons, with respired CO2 being 13C-depleted relative to δ13CB. Shoot δ13CR was positively related to leaf starch concentration in maple, while stem δ13CR was inversely related to stem growth. These relations were not significant for oak or cedar. The variability in δ13CR suggests (i) different contributions of respiratory pathways between organs and (ii) seasonality in the respiratory substrate and constitutive compounds for wood formation in deciduous species, less apparent in evergreen cedar, whose respiratory metabolism might be less variable.


Asunto(s)
Dióxido de Carbono , Árboles , Estaciones del Año , Árboles/fisiología , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Carbono/metabolismo , Hojas de la Planta/metabolismo
3.
Plant Cell Environ ; 46(9): 2680-2693, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37219237

RESUMEN

Tree stem respiration (RS ) is a substantial component of the forest carbon balance. The mass balance approach uses stem CO2 efflux and internal xylem fluxes to sum up RS , while the oxygen-based method assumes O2 influx as a proxy of RS . So far, both approaches have yielded inconsistent results regarding the fate of respired CO2 in tree stems, a major challenge for quantifying forest carbon dynamics. We collected a data set of CO2 efflux, O2 influx, xylem CO2 concentration, sap flow, sap pH, stem temperature, nonstructural carbohydrates concentration and potential phosphoenolpyruvate carboxylase (PEPC) capacity on mature beech trees to identify the sources of differences between approaches. The ratio of CO2 efflux to O2 influx was consistently below unity (0.7) along a 3-m vertical gradient, but internal fluxes did not bridge the gap between influx and efflux, nor did we find evidence for changes in respiratory substrate use. PEPC capacity was comparable with that previously reported in green current-year twigs. Although we could not reconcile differences between approaches, results shed light on the uncertain fate of CO2 respired by parenchyma cells across the sapwood. Unexpected high values of PEPC capacity highlight its potential relevance as a mechanism of local CO2 removal, which merits further research.


Asunto(s)
Fagus , Árboles , Dióxido de Carbono , Bosques , Carbono , Tallos de la Planta
4.
Sci Total Environ ; 872: 162167, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36775147

RESUMEN

Forests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events. The technology to build a better global forest monitoring network now exists. This white paper addresses the key structural components needed to achieve a novel meta-network. We propose to complement - rather than replace or unify - the existing heterogeneous infrastructure with standardized, quality-assured linking methods and interacting data processing centers to create an integrated forest monitoring network. These automated (research topic-dependent) linking methods in atmosphere, biosphere, and pedosphere play a key role in scaling site-specific results and processing them in a timely manner. To ensure broad participation from existing monitoring sites and to establish new sites, these linking methods must be as informative, reliable, affordable, and maintainable as possible, and should be supplemented by near real-time remote sensing data. The proposed novel meta-network will enable the detection of emergent patterns that would not be visible from isolated analyses of individual sites. In addition, the near real-time availability of data will facilitate predictions of current forest conditions (nowcasts), which are urgently needed for research and decision making in the face of rapid climate change. We call for international and interdisciplinary efforts in this direction.

5.
Nat Commun ; 13(1): 28, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013178

RESUMEN

Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.


Asunto(s)
Cambio Climático , Deshidratación , Ecología , Bosques , Rayos Infrarrojos , Clima , Sequías , Ecosistema , Noruega , Picea , Pinus sylvestris , Suelo , Árboles , Agua
6.
Plant Cell Environ ; 45(4): 1270-1285, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34914118

RESUMEN

Stem respiration (RS ) plays a crucial role in plant carbon budgets. However, its poor understanding limits our ability to model woody tissue and whole-tree respiration. A biophysical model of stem water and carbon fluxes (TReSpire) was calibrated on cedar, maple and oak trees during spring and late summer. For this, stem sap flow, water potential, diameter variation, temperature, CO2 efflux, allometry and biochemistry were monitored. Shoot photosynthesis (PN ) and nonstructural carbohydrates (NSC) were additionally measured to evaluate source-sink relations. The highest RS and stem growth was found in maple and oak during spring, both being seasonally decoupled from PN and [NSC]. Temperature largely affected maintenance respiration (RM ) in the short term, but temperature-normalized RM was highly variable on a seasonal timescale. Overall, most of the respired CO2 radially diffused to the atmosphere (>87%) while the remainder was transported upward with the transpiration stream. The modelling exercise highlights the sink-driven behaviour of RS and the significance of overall metabolic activity on nitrogen (N) allocation patterns and N-normalized respiratory costs to capture RS variability over the long term. These insights should be considered when modelling plant respiration, whose representation is currently biased towards a better understanding of leaf metabolism.


Asunto(s)
Acer , Xilema , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Tallos de la Planta/metabolismo , Respiración , Estaciones del Año , Árboles/metabolismo , Agua/metabolismo , Xilema/metabolismo
7.
Front Plant Sci ; 13: 1084043, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714788

RESUMEN

Pinus koraiensis is famous for its high-quality timber production all the way and is much more famous for its high value health-care nut oil production potential since 1990's, but the less understanding of its reproduction biology seriously hindered its nut productivity increase. Exploring the effects of reproduction on nutrient uptake, allocation and storage help to understand and modify reproduction patterns in masting species and high nut yield cultivar selection and breeding. Here, we compared seasonality in growth and in nitrogen ([N]) and phosphorus ([P]) concentrations in needles, branches and cones of reproductive (cone-bearing) and vegetative branches (having no cones) of P. koraiensis during a masting year. The growth of one- and two-year-old reproductive branches was significantly higher than that of vegetative branches. Needle, phloem and xylem [N] and [P] were lower in reproductive branches than in vegetative branches, although the extent and significance of the differences between branch types varied across dates. [N] and [P] in most tissues were high in spring, decreased during summer, and then recovered by the end of the growing season. Overall, [N] and [P] were highest in needles, lowest in the xylem and intermediate in the phloem. More than half of the N (73.5%) and P (51.6%) content in reproductive branches were allocated to cones. There was a positive correlation between cone number and N and P content in needles (R2 = 0.64, R2 = 0.73) and twigs (R2 = 0.65, R2 = 0.62) of two-year-old reproductive branches. High nutrient sink strength of cones and vegetative tissues of reproductive branches suggested that customized fertilization practices can help improve crop yield in Pinus koraiensis.

9.
Nature ; 580(7802): 227-231, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269351

RESUMEN

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Bosques , Árboles/metabolismo , Biomasa , Eucalyptus/crecimiento & desarrollo , Eucalyptus/metabolismo , Calentamiento Global/prevención & control , Modelos Biológicos , Nueva Gales del Sur , Fotosíntesis , Suelo/química , Árboles/crecimiento & desarrollo
10.
Plant Cell Environ ; 43(6): 1528-1544, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32154937

RESUMEN

Stem water storage capacity and hydraulic capacitance (CS ) play a crucial role in tree survival under drought-stress. To investigate whether CS adjusts to increasing water deficit, variation in stem water content (StWC) was monitored in vivo for 2 years and related to periodical measurements of tree water potential in Mediterranean Quercus ilex trees subjected either to permanent throughfall exclusion (TE) or to control conditions. Seasonal reductions in StWC were larger in TE trees relative to control ones, resulting in greater seasonal CS (154 and 80 kg m-3 MPa-1 , respectively), but only during the first phase of the desorption curve, when predawn water potential was above -1.1 MPa. Below this point, CS decreased substantially and did not differ between treatments (<20 kg m-3 MPa-1 ). The allometric relationship between tree diameter and sapwood area, measured via electrical resistivity tomography, was not affected by TE. Our results suggest that (a) CS response to water deficit in the drought-tolerant Q. ilex might be more important to optimize carbon gain during well-hydrated periods than to prevent drought-induced embolism formation during severe drought stress, and (b) enhanced CS during early summer does not result from proportional increases in sapwood volume, but mostly from increased elastic water.


Asunto(s)
Aclimatación/fisiología , Tallos de la Planta/fisiología , Quercus/fisiología , Agua/fisiología , Impedancia Eléctrica , Modelos Lineales , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Lluvia , Estaciones del Año , Temperatura
11.
New Phytol ; 225(5): 2214-2230, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31494939

RESUMEN

Mechanistic models of plant respiration remain poorly developed, especially in stems and woody tissues where measurements of CO2 efflux do not necessarily reflect local respiratory activity. We built a process-based model of stem respiration that couples water and carbon fluxes at the organ level (TReSpire). To this end, sap flow, stem diameter variations, xylem and soil water potential, stem temperature, stem CO2 efflux and nonstructural carbohydrates were measured in a maple tree, while xylem CO2 concentration and additional stem and xylem diameter variations were monitored in an ancillary tree for model validation. TReSpire realistically described: (1) turgor pressure to differentiate growing from nongrowing metabolism; (2) maintenance expenditures in xylem and outer tissues based on Arrhenius kinetics and nitrogen content; and (3) radial CO2 diffusivity and CO2 solubility and transport in the sap solution. Collinearity issues with phloem unloading rates and sugar-starch interconversion rates suggest parallel submodelling to close the stem carbon balance. TReSpire brings a breakthrough in the modelling of stem water and carbon fluxes at a detailed (hourly) temporal resolution. TReSpire is calibrated from a sink-driven perspective, and has potential to advance our understanding on stem growth dynamics, CO2 fluxes and underlying respiratory physiology across different species and phenological stages.


Asunto(s)
Dióxido de Carbono , Árboles , Floema , Tallos de la Planta , Respiración , Xilema
12.
Tree Physiol ; 39(11): 1838-1854, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31211374

RESUMEN

Given the importance of carbon allocation for plant performance and fitness, it is expected that competition and abiotic stress influence respiratory costs associated with stem wood biomass production and maintenance. In this study, stem respiration (R) was measured together with stem diameter increment in adult trees of eight co-occurring species in a sub-Mediterranean forest stand for 2 years. We estimated growth R (Rg), maintenance R (Rm) and the growth respiration coefficient (GRC) using two gas exchange methods: (i) estimating Rg as the product of growth and GRC (then Rm as R minus Rg) and (ii) estimating Rm from temperature-dependent kinetics of basal Rm at the dormant season (then Rg as R minus Rm). In both cases, stem basal-area growth rates governed intra-annual variation in R, Rg and Rm. Maximum annual Rm occurred slightly before or after maximum Rg. The mean contribution of Rm to R during the growing season ranged from 56% to 88% across species using method 1 and from 23% to 66% using method 2. An analysis accounting for the phylogenetic distance among species indicated that more shade-tolerant, faster growing species exhibited higher Rm and Rg than less shade-tolerant, slower growing ones, suggesting a balance between carbon supply and demand mediated by growth. However, GRC was not related to species growth rate, wood density, or drought and shade tolerance across the surveyed species nor across 27 tree species for which GRC was compiled. The GRC estimates based on wood chemical analysis were lower (0.19) than those based on gas exchange methods (0.35). These results give partial support to the hypothesis that wood production and maintenance costs are related to species ecology and highlight the divergence of respiratory parameters widely used in plant models according to the methodological approach applied to derive them.


Asunto(s)
Bosques , Madera , Biomasa , Sequías , Filogenia
13.
Plant Cell Environ ; 42(7): 2151-2164, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30903994

RESUMEN

To quantify stem respiration (RS ) under elevated CO2 (eCO2 ), stem CO2 efflux (EA ) and CO2 flux through the xylem (FT ) should be accounted for, because part of respired CO2 is transported upwards with the sap solution. However, previous studies have used EA as a proxy of RS , which could lead to equivocal conclusions. Here, to test the effect of eCO2 on RS , both EA and FT were measured in a free-air CO2 enrichment experiment located in a mature Eucalyptus native forest. Drought stress substantially reduced EA and RS , which were unaffected by eCO2 , likely as a consequence of its neutral effect on stem growth in this phosphorus-limited site. However, xylem CO2 concentration measured near the stem base was higher under eCO2 , and decreased along the stem resulting in a negative contribution of FT to RS , whereas the contribution of FT to RS under ambient CO2 was positive. Negative FT indicates net efflux of CO2 respired below the monitored stem segment, likely coming from the roots. Our results highlight the role of nutrient availability on the dependency of RS on eCO2 and suggest stimulated root respiration under eCO2 that may shift vertical gradients in xylem [CO2 ] confounding the interpretation of EA measurements.


Asunto(s)
Transporte Biológico/fisiología , Dióxido de Carbono/metabolismo , Respiración de la Célula/fisiología , Eucalyptus/metabolismo , Tallos de la Planta/metabolismo , Xilema/química , Dióxido de Carbono/farmacología , Respiración de la Célula/efectos de los fármacos , Sequías , Bosques , Modelos Biológicos , Fósforo , Raíces de Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Suelo
14.
Tree Physiol ; 39(5): 819-830, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30726992

RESUMEN

Respired CO2 in woody tissues radially diffuses to the atmosphere or it is transported upward with the transpiration stream, making the origin of CO2 in stem CO2 efflux (EA) uncertain, which may confound stem respiration (RS) estimates. An aqueous 13C-enriched solution was infused into stems of Populus tremula L. trees, and real-time measurements of 13C-CO2 and 12C-CO2 in EA were performed via Cavity Ring Down Laser Spectroscopy (CRDS). The contribution of locally respired CO2 (LCO2) and xylem-transported CO2 (TCO2) to EA was estimated from their different isotopic composition. Mean daily values of TCO2/EA ranged from 13% to 38%, evidencing the notable role that xylem CO2 transport plays in the assessment of stem respiration. Mean daily TCO2/EA did not differ between treatments of drought stress and light exclusion of woody tissues, but they showed different TCO2/EA dynamics on a sub-daily time scale. Sub-daily CO2 diffusion patterns were explained by a light-induced axial CO2 gradient ascribed to woody tissue photosynthesis, and the resistance to radial CO2 diffusion determined by bark water content. Here, we demonstrate the outstanding potential of CRDS paired with 13C-CO2 labelling to advance in the understanding of CO2 movement at the plant-atmosphere interface and the respiratory physiology in woody tissues.


Asunto(s)
Dióxido de Carbono/fisiología , Transpiración de Plantas , Análisis Espectral/métodos , Árboles/fisiología , Xilema/fisiología , Botánica/métodos , Isótopos/análisis , Tallos de la Planta/fisiología , Populus/fisiología
15.
New Phytol ; 217(2): 586-598, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28984360

RESUMEN

Daytime decreases in temperature-normalised stem CO2 efflux (EA_D ) are commonly ascribed to internal transport of respired CO2 (FT ) or to an attenuated respiratory activity due to lowered turgor pressure. The two are difficult to separate as they are simultaneously driven by sap flow dynamics. To achieve combined gradients in turgor pressure and FT , sap flow rates in poplar trees were manipulated through severe defoliation, severe drought, moderate defoliation and moderate drought. Turgor pressure was mechanistically modelled using measurements of sap flow, stem diameter variation, and soil and stem water potential. A mass balance approach considering internal and external CO2 fluxes was applied to estimate FT . Under well-watered control conditions, both turgor pressure and sap flow, as a proxy of FT , were reliable predictors of EA_D . After tree manipulation, only turgor pressure was a robust predictor of EA_D . Moreover, FT accounted for < 15% of EA_D . Our results suggest that daytime reductions in turgor pressure and associated constrained growth are the main cause of EA_D in young poplar trees. Turgor pressure is determined by both carbohydrate supply and water availability, and should be considered to improve our widely used but inaccurate temperature-based predictions of woody tissue respiration in global models.


Asunto(s)
Dióxido de Carbono/metabolismo , Tallos de la Planta/metabolismo , Populus/fisiología , Presión , Temperatura , Árboles/fisiología , Transporte Biológico , Respiración de la Célula , Modelos Lineales , Factores de Tiempo , Agua , Xilema/metabolismo
16.
Plant Cell Environ ; 40(8): 1379-1391, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28152583

RESUMEN

Hydraulic modelling is a primary tool to predict plant performance in future drier scenarios. However, as most tree models are validated under non-stress conditions, they may fail when water becomes limiting. To simulate tree hydraulic functioning under moist and dry conditions, the current version of a water flow and storage mechanistic model was further developed by implementing equations that describe variation in xylem hydraulic resistance (RX ) and stem hydraulic capacitance (CS ) with predawn water potential (ΨPD ). The model was applied in a Mediterranean forest experiencing intense summer drought, where six Quercus ilex trees were instrumented to monitor stem diameter variations and sap flow, concurrently with measurements of predawn and midday leaf water potential. Best model performance was observed when CS was allowed to decrease with decreasing ΨPD . Hydraulic capacitance decreased from 62 to 25 kg m-3 MPa-1 across the growing season. In parallel, tree transpiration decreased to a greater extent than the capacitive water release and the contribution of stored water to transpiration increased from 2.0 to 5.1%. Our results demonstrate the importance of stored water and seasonality in CS for tree hydraulic functioning, and they suggest that CS should be considered to predict the drought response of trees with models.


Asunto(s)
Sequías , Modelos Biológicos , Tallos de la Planta/fisiología , Quercus/fisiología , Árboles/fisiología , Agua/fisiología , Calibración , Simulación por Computador , Quercus/anatomía & histología , Lluvia , Temperatura , Árboles/anatomía & histología , Xilema/fisiología
17.
Tree Physiol ; 36(11): 1409-1421, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27126229

RESUMEN

To accurately estimate stem respiration (RS), measurements of both carbon dioxide (CO2) efflux to the atmosphere (EA) and internal CO2 flux through xylem (FT) are needed because xylem sap transports respired CO2 upward. However, reports of seasonal dynamics of FT and EA are scarce and no studies exist in Mediterranean species under drought stress conditions. Internal and external CO2 fluxes at three stem heights, together with radial stem growth, temperature, sap flow and shoot water potential, were measured in Quercus pyrenaica Willd. in four measurement campaigns during one growing season. Substantial daytime depressions in temperature-normalized EA were observed throughout the experiment, including prior to budburst, indicating that diel hysteresis between stem temperature and EA cannot be uniquely ascribed to diversion of CO2 in the transpiration stream. Low internal [CO2] (<0.5%) resulted in low contributions of FT to RS throughout the growing season, and RS was mainly explained by EA (>90%). Internal [CO2] was found to vary vertically along the stems. Seasonality in resistance to radial CO2 diffusion was related to shoot water potential. The low internal [CO2] and FT observed in our study may result from the downregulation of xylem respiration in response to a legacy of coppicing as well as high radial diffusion of CO2 through cambium, phloem and bark tissues, which was related to low water content of stems. Long-term studies analyzing temporal and spatial variation in internal and external CO2 fluxes and their interactions are needed to mechanistically understand and model respiration of woody tissues.


Asunto(s)
Dióxido de Carbono/metabolismo , Tallos de la Planta/metabolismo , Quercus/metabolismo , Árboles/metabolismo , España , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...